Search results for "Electromagnetic transient"
showing 10 items of 11 documents
Finite difference time domain simulation of earth electrodes soil ionisation under lightning surge condition
2008
The non linear effects of soil ionisation on the behaviour of earth electrodes are investigated by a finite difference time domain numerical scheme. A time variable soil resistivity is used in order to simulate the soil breakdown; step by step the resistivity value is controlled by the local instantaneous value of the electric field compared with the electrical strength, fixed for the soil. No a priori hypothesis about the geometrical shape of the ionised zone around the electrodes has to be enforced. Simulation results related to complex earth electrodes of limited extension are reported. The model has been validated by comparing the computed results with data available in technical litera…
Finite difference time domain simulation of soil ionization in grounding systems under lightning surge conditions
2004
This paper proposes a Maxwell’s equations finite difference time domain (FDTD) approach for electromagnetic transients in ground electrodes in order to take into account the non linear effects due to soil ionization. A time variable soil resistivity method is used in order to simulate the soil breakdown, without the formulation of an initial hypothesis about the geometrical shape of the ionized zone around the electrodes. The model has been validated by comparing the computed results with available data found in technical literature referred to concentrated earths. Some application examples referred to complex grounding systems are reported to show the computational capability of the propos…
A full wave three dimensional meshless approach for electromagnetic transients
2010
Corrective meshless particle formulations for time domain Maxwell's equations
2007
AbstractIn this paper a meshless approximation of electromagnetic (EM) field functions and relative differential operators based on particle formulation is proposed. The idea is to obtain numerical solutions for EM problems by passing up the mesh generation usually required to compute derivatives, and by employing a set of particles arbitrarily placed in the problem domain. The meshless Smoothed Particle Hydrodynamics method has been reformulated for solving the time domain Maxwell's curl equations. The consistency of the discretized model is investigated and improvements in the approximation are obtained by modifying the numerical process. Corrective algorithms preserving meshless consiste…
On the use of a meshless solver for PDEs governing electromagnetic transients
2009
In this paper some key elements of the Smoothed Particle Hydrodynamics methodology suitably reformulated for analyzing electromagnetic transients are investigated. The attention is focused on the interpolating smoothing kernel function which strongly influences the computational results. Some issues are provided by adopting the polynomial reproducing conditions. Validation tests involving Gaussian and cubic B-spline smoothing kernel functions in one and two dimensions are reported.
A simulation model for electromagnetic transients in lightning protection systems
2002
This paper deals with the evaluation of electromagnetic transients in a lightning protection system (LPS). A field approach is used, based on the numerical solution of a modified version of the thin-wire electric field integral equation in the frequency domain. Time profiles of interesting electromagnetic quantities are computed by using a discrete fast Fourier transform algorithm. The model takes into account coupling effects among aerial parts and ground electrodes in order to correctly estimate the quantities which can determine electromagnetic hazard inside the LPS; transient touch and step voltages can be easily evaluated also taking into account the human body presence on the soil sur…
EMI Analysis in Electrical Drives under Lightning Surge Conditions
2012
In this paper, a complete model of a power drive system including the earth electrodes is proposed to evaluate electromagnetic conducted interference due to lightning pulses. Circuit model of a power drive system is joined with a full-wave approach for the simulation of the time behavior of the grounding system. The proposed model enables to predict the electromagnetic conducted interference generated in the power drive system when lightning conditions involve the earth electrodes.
Smoothed Particle ElectroMagnetics: A mesh-free solver for transients
2006
AbstractIn this paper an advanced mesh-free particle method for electromagnetic transient analysis, is presented. The aim is to obtain efficient simulations by avoiding the use of a mesh such as in the most popular grid-based numerical methods. The basic idea is to obtain numerical solutions for partial differential equations describing the electromagnetic problem by using a set of particles arbitrarily placed in the problem domain. The mesh-free smoothed particle hydrodynamics method has been adopted to obtain numerical solution of time domain Maxwell's curl equations. An explicit finite difference scheme has been employed for time integration. Details about the numerical treatment of elec…
Wavelet-based efficient simulation of electromagnetic transients in a lightning protection system
2003
In this paper, a wavelet-based efficient simulation of electromagnetic transients in a lightning protection systems (LPS) is presented. The analysis of electromagnetic transients is carried out by employing the thin-wire electric field integral equation in frequency domain. In order to easily handle the boundary conditions of the integral equation, semiorthogonal compactly supported spline wavelets, constructed for the bounded interval [0,1], have been taken into account in expanding the unknown longitudinal currents. The integral equation is then solved by means of the Galerkin method. As a preprocessing stage, a discrete wavelet transform is used in order to efficiently compress the Fouri…
A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation
2012
A meshless particle method based on an unconditionally stable time domain numerical scheme, oriented to electromagnetic transient simulations, is presented. The proposed scheme improves the smoothed particle electromagnetics method, already developed by the authors. The time stepping is approached by using the alternating directions implicit finite difference scheme, in a leapfrog way. The proposed formulation is used in order to efficiently overcome the stability relation constraint of explicit schemes. In fact, due to this constraint, large time steps cannot be used with small space steps and vice-versa. The same stability relation holds when the meshless formulation is applied together w…